RESOLVABILITY, PART 3.

István Juhász

Alfréd Rényi Institute of Mathematics

Hejnice, February 2012

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

monotone normality

István Juhász (Rényi Institute)

イロト イヨト イヨト イヨト

monotone normality

DEFINITION.

イロト イヨト イヨト イヨト

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed)

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

< ロ > < 同 > < 三 > < 三

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

• = • •

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

< ロ > < 同 > < 三 > < 三

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

A (1) > A (1) > A

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

```
(i) x \in H(x, U) \subset U,
```

and

```
(ii) if H(x, U) \cap H(y, V) \neq \emptyset then x \in V or y \in U.
```

FACT. Metric spaces

< ロ > < 同 > < 三 > < 三

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

イロト イポト イヨト イヨ

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods :

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set H(x, U) s. t.

(i) $x \in H(x, U) \subset U$,

and

```
(ii) if H(x, U) \cap H(y, V) \neq \emptyset then x \in V or y \in U.
```

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?

イロト イポト イヨト イヨ

SD spaces

イロト イヨト イヨト イヨト

SD spaces

DEFINITION.

István Juhász (Rényi Institute)

イロン イ理 とく ヨン イヨン

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.

• • • • • • • • • • • •

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

• • • • • • • • • • • •

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

THEOREM. (DTTW, 2002)

Crowded MN spaces are SD, hence ω -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for all $x \in D$.

(ii) X is an SD space if it is T_1 and every point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1987)

Every SD space is ω -resolvable.

THEOREM. (DTTW, 2002)

Crowded MN spaces are SD, hence ω -resolvable.

PROBLEM. (Ceder and Pearson, 1967)

Are ω -resolvable spaces maximally resolvable?

◆□> ◆圖> ◆理> ◆理>

$[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

< ロ > < 同 > < 三 > < 三 >

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD.

< ロ > < 同 > < 三 > < 三

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

< ロ > < 同 > < 三 > < 三

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1 -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1 -resolvable.

- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.

< ロ > < 同 > < 三 > < 三 >

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1 -resolvable.

- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is not ω_2 -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $[J-S-Sz] \equiv I$. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY, Resolvability and monotone normality, Israel J. Math., 166 (2008), no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is not ω_1 -resolvable.

- If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is not ω_2 -resolvable.

This left a number of questions open.

イロト 不得 トイヨト イヨト

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

< ロ > < 同 > < 三 > < 三

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

• • • • • • • • • • • • •

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

 $\mathcal{F} \in un(\lambda)$ is maximally decomposable iff it is μ -decomposable for all $\omega \leq \mu \leq \lambda$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

 $\mathcal{F} \in un(\lambda)$ is maximally decomposable iff it is μ -decomposable for all $\omega \leq \mu \leq \lambda$. (un(λ) = set of all uniform ultrafilters on λ .)

イロト イポト イヨト イヨト

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

 $\mathcal{F} \in un(\lambda)$ is maximally decomposable iff it is μ -decomposable for all $\omega \leq \mu \leq \lambda$. (un(λ) = set of all uniform ultrafilters on λ .)

FACTS.

イロト イポト イヨト イヨト

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

 $\mathcal{F} \in un(\lambda)$ is maximally decomposable iff it is μ -decomposable for all $\omega \leq \mu \leq \lambda$. (un(λ) = set of all uniform ultrafilters on λ .)

FACTS.

– Any "measure" is $\omega\text{-descendingly complete, hence not}$ $\omega\text{-decomposable.}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

 $\mathcal{F} \in un(\lambda)$ is maximally decomposable iff it is μ -decomposable for all $\omega \leq \mu \leq \lambda$. (un(λ) = set of all uniform ultrafilters on λ .)

FACTS.

– Any "measure" is $\omega\text{-descendingly complete, hence not}$ $\omega\text{-decomposable.}$

– [Donder, 1988] If there is a not maximally decomposable uniform ultrafilter then there is a measurable cardinal in some inner model.

・ロン ・ 四 > ・ ヨ > ・ ヨ > ・ ヨ

DEFINITION. An ultrafilter \mathcal{F} is μ -descendingly complete iff for any descending $\{A_{\alpha} : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_{\alpha} : \alpha < \mu\} \in \mathcal{F}$ (or, equivalently, $\bigcap \{A_{\alpha} : \alpha < \mu\} \neq \emptyset$).

Not μ -descendingly complete is called μ -decomposable.

 $\mathcal{F} \in un(\lambda)$ is maximally decomposable iff it is μ -decomposable for all $\omega \leq \mu \leq \lambda$. (un(λ) = set of all uniform ultrafilters on λ .)

FACTS.

– Any "measure" is $\omega\text{-descendingly complete, hence not}$ $\omega\text{-decomposable.}$

- [Donder, 1988] If there is a not maximally decomposable uniform ultrafilter then there is a measurable cardinal in some inner model.

– [Kunen - Prikry, 1971] If $\lambda < \aleph_{\omega}$ then every $\mathcal{F} \in un(\lambda)$ is maximally decomposable.

◆□> ◆圖> ◆理> ◆理>

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

Main results of [J-M]

(1) TFAEV (for a fixed κ):

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.

$[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

Main results of [J-M]

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

Main results of [J-M]

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

Main results of [J-M]

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.

 $[J-M] \equiv I$. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of monotonically normal spaces, to appear in Israel J. Math.

Main results of [J-M]

- (1) TFAEV (for a fixed κ):
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every uniform ultrafilter (on a cardinal $< \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is not ω_1 -resolvable.

István Juhász (Rényi Institute)

イロト イヨト イヨト イヨト

<ロ> <問> <問> < 回> < 回> 、

filtration spaces

DEFINITION.

-F is a filtration if dom(F) = T is an infinitely branching tree

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω)

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

– For $G \subset T$, $G \in \tau_{F}$ iff

 $t \in G \Rightarrow G \cap S(t) \in F(t)$,

• • • • • • • • • • • • •

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

– For $G \subset T$, $G \in \tau_{F}$ iff

$$t \in \mathbf{G} \Rightarrow \mathbf{G} \cap \mathbf{S}(t) \in \mathbf{F}(t),$$

 $-X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

– For $G \subset T$, $G \in \tau_{F}$ iff

$$t \in \mathbf{G} \Rightarrow \mathbf{G} \cap \mathbf{S}(t) \in \mathbf{F}(t),$$

 $-X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space X(F) is MN:

- *F* is a filtration if dom(*F*) = *T* is an infinitely branching tree (of height ω) and, for each $t \in T$, *F*(*t*) is a filter on *S*(*t*) that contains all co-finite subsets of *S*(*t*).

– For $G \subset T$, $G \in \tau_{F}$ iff

$$t \in \mathbf{G} \Rightarrow \mathbf{G} \cap \mathbf{S}(t) \in \mathbf{F}(t),$$

 $-X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space X(F) is MN: For $s \in V \in \tau_F$ put

$$H(s, V) = \{t \in V : s \le t \text{ and } [s, t] \subset V\}$$

(日) (同) (日) (日)

irresolvability of ultrafiltration spaces

イロト イヨト イヨト イ

THEOREM. [J-S-Sz]

If *F* is an ultrafiltration and μ is a regular cardinal s.t. *F*(*t*) is μ -descendingly complete for all $t \in T = \text{dom}(F)$,

- 4 ∃ →

THEOREM. [J-S-Sz]

If *F* is an ultrafiltration and μ is a regular cardinal s.t. *F*(*t*) is μ -descendingly complete for all $t \in T = \text{dom}(F)$, then *X*(*F*) is hereditarily μ^+ -irresolvable.

• • • • • • • • • • • •

THEOREM. [J-S-Sz]

If *F* is an ultrafiltration and μ is a regular cardinal s.t. *F*(*t*) is μ -descendingly complete for all $t \in T = \text{dom}(F)$, then *X*(*F*) is hereditarily μ^+ -irresolvable.

COROLLARY. [J-S-Sz]

If $\mathcal{F} \in un(\kappa)$ is a measure and $F(t) = \mathcal{F}$ for all $t \in dom(F) = \kappa^{<\omega}$ then X(F) is hereditarily ω_1 -irresolvable.

< ロ > < 同 > < 三 > < 三 > -

イロト イヨト イヨト イヨト

DEFINITION. [J-M]

イロト イヨト イヨト イヨト

DEFINITION. [J-M] F is a λ -filtration if

< □ > < □ > < □ > < □ > < □ >

DEFINITION. [J-M] F is a λ -filtration if

(i) $T = \operatorname{dom}(F) \subset \lambda^{<\omega}$,

イロト イポト イヨト イヨト

DEFINITION. [J-M] F is a λ -filtration if

(i) $T = \operatorname{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

イロン イ理 とくほとく ほ

DEFINITION. [J-M] F is a λ -filtration if

(i) $T = \operatorname{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in \mathrm{un}(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

 $\{\alpha: \mu_{t \frown \alpha} > \mu\} \in F(t).$

• • • • • • • • • • • •

DEFINITION. [J-M] F is a λ -filtration if

(i) $T = \operatorname{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in un(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

$$\{\alpha: \mu_{t \cap \alpha} > \mu\} \in F(t).$$

NOTE. If *F* is a λ -filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

• • • • • • • • • • • •

DEFINITION. [J-M] F is a λ -filtration if

(i) $T = \operatorname{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in un(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

 $\{\alpha: \mu_{t \cap \alpha} > \mu\} \in F(t).$

NOTE. If *F* is a λ -filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

- The λ -filtration *F* is full if $T = \text{dom}(F) = \lambda^{<\omega}$.

< ロ > < 同 > < 三 > < 三

э

DEFINITION. [J-M] F is a λ -filtration if

(i) $T = \operatorname{dom}(F) \subset \lambda^{<\omega}$,

(ii) for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{t^{\alpha} : \alpha < \mu_t\} \text{ and } F(t) \in un(\mu_t),$$

(iii) moreover, for any $\mu < \lambda$ and $t \in T$:

 $\{\alpha: \mu_{t \cap \alpha} > \mu\} \in F(t).$

NOTE. If F is a λ -filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

- The λ -filtration F is full if $T = \text{dom}(F) = \lambda^{<\omega}$.

Full λ -filtrations were considered in [J-S-Sz].

István Juhász (Rényi Institute)

Э.

THEOREM [J-S-Sz]

István Juhász	(Rényi	Institute)
---------------	--------	------------

< □ > < □ > < □ > < □ > < □ >

reduction results

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

э

イロト イ団ト イヨト イヨト

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

< ロ > < 同 > < 三 > < 三

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

• • • • • • • • • • • •

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

THEOREM [J-M]

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

THEOREM [J-M]

For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

THEOREM [J-M]

- For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV
- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

イロト 不得 トイヨト イヨト ニヨー

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

THEOREM [J-M]

For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

THEOREM [J-M]

- For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV
- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every λ -filtration F.

THEOREM [J-S-Sz]

For $\kappa \leq \lambda = cf(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every full λ -filtration F.

THEOREM [J-M]

For λ singular and $cf(\lambda)^+ < \kappa \leq \lambda$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ -resolvable.
- -X(F) is κ -resolvable for every λ -filtration F.

NOTE. In both results, the case $\kappa = \lambda$ is of main integest.

István Juhász (Rényi Institute)

Э.

イロン イロン イヨン イヨン

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ -filtration F and a one-one continuous map $g : X(F) \to X$.

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ -filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^{\lambda}$.

A I > A = A A

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ -filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^{\lambda}$. Then $x \in T_{\lambda}(X)$.

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ -filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^{\lambda}$. Then $x \in T_{\lambda}(X)$. But if $T_{\lambda}(X)$ is dense in X, then X is λ -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ -filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^{\lambda}$. Then $x \in T_{\lambda}(X)$. But if $T_{\lambda}(X)$ is dense in X, then X is λ -resolvable.

This takes care of the case when λ is regular.

A (1) > A (1) > A

If every $x \in X$ is the complete accumulation point of a SD set $Y \subset X$ with $|Y| = \lambda$ then there is a full λ -filtration F and a one-one continuous map $g : X(F) \to X$.

Assume that λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and $x \in X$ is not a complete accumulation point of any SD set $Y \in [X]^{\lambda}$. Then $x \in T_{\lambda}(X)$. But if $T_{\lambda}(X)$ is dense in X, then X is λ -resolvable.

This takes care of the case when λ is regular.

The singular case (proved in [J-M]) is similar but more complicated.

< ロ > < 同 > < 三 > < 三 >

2

イロン イ理 とくほとく ほ

THEOREM [J-M]

István Juhász (Rényi Institute)

イロン イ理 とくほとく ほ

THEOREM [J-M]

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

THEOREM [J-M]

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t^{\frown}\alpha) \text{ is } \mu\text{-decomposable}\} \in F(t),\$

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t^{\alpha}) \text{ is } \mu\text{-decomposable}\} \in F(t),$

then X(F) is κ -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t^{\alpha}) \text{ is } \mu\text{-decomposable}\} \in F(t),$

then X(F) is κ -resolvable.

COROLLARY [J-M]

< ロ > < 同 > < 三 > < 三 >

If $\kappa \leq \lambda$ and *F* is a λ -filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \ge \kappa$ then F(t) is κ -decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

 $\{\alpha < \mu_t : F(t^{\alpha}) \text{ is } \mu\text{-decomposable}\} \in F(t),$

then X(F) is κ -resolvable.

COROLLARY [J-M]

If every $\mathcal{F} \in un(\mu)$ is maximally decomposable whenever $\omega \leq \mu \leq \lambda$, then X(F) is λ -resolvable for any λ -filtration F.

István Juhász (Rényi Institute)